PENERAPAN MACHINE LEARNING MENGGUNAKAN ALGORITMA RANDOM FOREST UNTUK PREDIKSI HARGA MOBIL BEKAS

Penulis

  • Belinda Eka Sarah Dewi Universitas Bani Saleh
  • Sandy Haikal Universitas Bani Saleh
  • H.S. Sulistyowati Universitas Bani Saleh
  • Rina Fitriani Universitas Bani Saleh
  • Domo Pranowo Kuswandono Universitas Bani Saleh

Kata Kunci:

Random Forest, Machine Learning, Prediksi Harga, Mobil Bekas, E-Commerce

Abstrak

Perkembangan teknologi informasi telah membawa dampak signifikan dalam berbagai sektor industri, termasuk sektor otomotif. Salah satu aspek yang semakin menarik perhatian adalah prediksi harga mobil bekas. Dalam studi ini, algoritma Random Forest digunakan untuk memprediksi harga mobil bekas berdasarkan data historis. Faktor-faktor seperti model mobil, tahun produksi, kapasitas mesin, jarak tempuh, transmisi, bahan bakar, dan wilayah dimasukkan ke dalam model untuk meningkatkan akurasi prediksi. Aplikasi prediksi ini dikembangkan dalam bentuk WebApp, memudahkan pengguna untuk memasukkan parameter mobil dan memperoleh hasil prediksi. Hasil pemodelan  menunjukkan bahwa model mampu menjelaskan 90% variabilitas harga berdasarkan input pengguna. Dengan demikian, model ini dapat menjadi acuan berguna bagi penjual dan pembeli mobil bekas dalam menetapkan harga yang sesuai dengan kondisi pasar. Aplikasi ini memberikan wawasan tentang faktor-faktor yang memengaruhi harga mobil bekas dan potensinya dalam membantu pengambilan keputusan. Teknologi Machine Learning terbukti efektif dalam menangani kompleksitas pasar otomotif yang dinamis, memberikan prediksi harga yang lebih akurat dibandingkan metode tradisional.

##submission.downloads##

Diterbitkan

2024-12-31

Cara Mengutip

Belinda Eka Sarah Dewi, Haikal, S., Sulistyowati, H., Fitriani, R., & Pranowo Kuswandono, D. (2024). PENERAPAN MACHINE LEARNING MENGGUNAKAN ALGORITMA RANDOM FOREST UNTUK PREDIKSI HARGA MOBIL BEKAS. Jurnal Teknologi Informasi Dan Digital, 2(1), 20- 31. Diambil dari https://banisalehjurnal.ubs.ac.id/index.php/tridi/article/view/38